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ABSTRACT determined accurately (Blackmer and White, 1998) and
for low cost (Wolf and Buttel, 1996; Lu et al., 1997).The surface soil organic C (SOC) concentration is a useful soil

The dark color of soil is typically associated with highproperty to map soils, interpret soil properties, and guide fertilizer
organic-matter concentration and high native fertility.and agricultural chemical applications. The objective of this study was
Soils with thick, dark surface horizons are often sepa-to determine whether surface SOC concentrations could be predicted

from remotely sensed imagery (an aerial photograph of bare surface rated from other soils at the highest categorical level in
soil) of a 115-ha field located in Crisp County, Georgia. The surface many soil classification systems, reflecting the differ-
SOC concentrations were determined for soil samples taken at 28 ences in the genesis of soils as well as the importance
field locations. The statistical relationship between surface SOC con- of these soils as a medium for plant growth and indepen-
centrations and image intensity values in the red, green, and blue dent natural bodies worthy of further study (Schulze
bands was fit to a to a logarithm linear equation (R2 5 0.93). The et al., 1993). Research has been done concerning thedistribution of the surface SOC concentrations was predicted with

relationships between soil color and soil organic matter.two approaches. The first approach was to apply the relationship
However, many of these studies were based on Munsellto individual pixels and then determine the distribution; the second
color notations for specific soils at specific locationsapproach was to classify the image and then apply the relationship
(Alexander, 1969; Steinhardt and Franzmeier, 1979;to determine the class boundaries and means. Eight levels of surface

SOC concentrations were classified in both approaches, and there Schulze et al., 1993) or for the purpose of designing
was good agreement between the two approaches with a probability spectral sensors (Pitts et al., 1983; Griffis, 1985; Smith
value near one using a paired t-test. The predicted and measured et al., 1987).
surface SOC concentrations, based on additional soil samples from There were attempts to quantify relationships be-
31 field locations, were compared using linear regression (r 2 5 0.97 tween soil color and organic matter concentrations by
and r 2 5 0.98 for the two approaches). The surface SOC concentrations Brown and O’Neal in the 1920’s (Schulze et al., 1993).
were correctly classified in 77.4 and 74.2% of cases for the two ap-

Later, color charts or tables that described the relation-proaches. The procedures tested were accurate enough to be used
ships between soil color and organic-matter concentra-for precision farming applications in agricultural fields.
tion were developed by using visual color descriptions or
Munsell soil color charts (Shields et al., 1968; Alexander,
1969; Steinhardt and Franzmeier, 1979). Shields et al.Traditionally, farm managers apply fertilizers,
(1968) conducted a study of several Ap horizons in anchemicals, and other crop-production inputs to opti-
attempt to distinguish between two soils, based on themize the production of the field as a whole. This manage-
soil color. Organic C was found to be correlated withment protocol often results in over-application of crop-
soil color for both soils. Alexander (1969) developed aproduction inputs in some field areas and under-applica-
color chart for visually estimating the organic-mattertion in others because of variations of field characteris- concentration of Ap horizons from more than 300 Illi-tics, including soil organic C, soil texture, soil nutrients, nois soil samples. Steinhardt and Franzmeier (1979) cor-field topography, and other properties. In addition, uni- related the organic-matter concentrations with the moistform applications may increase the chances of pollution soil color for 262 samples of Ap horizons in Indiana.of the environment due to excess application in some Both papers classified organic-matter concentrationsfield areas. Precision farming technology has been into quantitative categories using the Munsell Colorshown to optimize application rates if the variation of System as standards, and general relationships were de-

field characteristics can be used to guide the application veloped for visually estimating organic-matter concen-
rate of crop-production inputs (Lowenberg-Deboer and trations. Page (1974) used a color-difference meter to
Boehlje, 1996; Rawlins, 1996; Wolf and Buttel, 1996; examine 96 soils from the Coastal Plain Region of South
Joseph 1998). The organic C concentrations of surface Carolina and found a curvilinear relationship between
soil have been used to spatially vary the application rate reflectance and percent organic matter in the 0 to 5%
of some crop-production inputs (Blackmer and White, range. Research has shown that spectroscopic measure-
1998). The surface soil organic C concentration affects ment of soil reflectance can give better accuracy in soil
the activity of many herbicides (Hance, 1988), influences color measurement than visual matching (Schulze et al.,
plant-available N (Dahnke and Johnson, 1990), and also 1993; Torrent and Barrón, 1993).
affects the soil’s ability to adsorb plant nutrients (Havlin Reflectance in various spectral bands has been corre-
et al., 1999). Knowing its concentration may therefore lated with soil properties such as soil organic matter.
be useful, especially if its spatial distribution could be Spectral sensors were designed to measure soil organic

matter based on the relationship between light reflec-
tance and soil organic matter (Pitts et al., 1983; Griffis,Dep. of Crop and Soil Sci., Univ. of Georgia, Athens, GA 30602.
1985; Smith et al., 1987; Shonk et al., 1991). DifferentReceived 29 Oct. 1998. *Corresponding author (fchen@arches.

uga.edu).
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algorithms were developed to transform the output re-
flectance to concentration of soil organic matter and
soil moisture. Baumgardner et al. (1970) used 197 grid
samples for a 25-ha field to correlate the soil organic-
matter content to different wavelengths in 12 channels
from the visual to infrared range, and a computer print-
out of soil pattern was generated. It was shown that
the organic-matter content can be predicted from light
reflectance with a linear or curvilinear relationship in
the visual and infrared range (Baumgardner et al., 1970;
Leger, 1979; Cihlar et al., 1987; Smith et al., 1987; Sud-
duth and Hummel, 1988; Shonk et al., 1991; Henderson
et al., 1992). Research also showed that the relationship
between soil organic matter and reflectance is poor if
soil samples were collected from large geographic areas
or different landscapes, such as soil samples from an
entire state (Fernandez et al., 1988; Henderson et al.,
1992; Schulze et al., 1993). The cause may be due to
different types of parent materials (Henderson et al.,
1992).

In previous research, there was no attempt to accu-
rately determine the distribution of surface soil organic
C (SOC) concentrations based on the reflected image
intensity data for a field, which may be useful for preci-

Fig. 1. Location of the study site in Georgia.sion farming. Relatively simple and inexpensive meth-
ods that would be both more accurate and less expensive determined with a Leco CNS analyzer (Leco, St. Joseph, MI)
than grid sampling are needed to develop maps of sur- (Nelson and Sommers, 1996). After the 28 samples were col-
face SOC concentrations. The method should employ lected, the distribution of image-intensity values at the sam-
only the minimum number of soil samples for organic pling locations was also observed to determine if the image-

intensity values were well distributed. Wide distributions inC analysis to minimize the costs for creating maps. The
image-intensity values were observed over the red, green, andobjective of this study was to map the surface SOC
blue bands (Fig. 4). These 28 soil samples were used to developconcentrations for a field using an inexpensive remotely
the relationship between surface SOC concentrations and im-sensed image, a color slide, coupled with image pro-
age-intensity values. To verify the relationship, 32 soil samplescessing and auto-classification technology and statistical were obtained from other locations within the same field in

approaches. A field located in Crisp County, Georgia, March and June 1998. One of these samples was not used
was selected for this study, in part because of its range because it was too close to a shade tree. The sampling proce-
and spatial distribution of surface SOC concentrations. dures, sample processing, storage, and analysis were the same

as for the 28 samples, except that 14 of the samples were
the samples from grid sampling on 0.4-ha centers. These 14MATERIALS AND METHODS
samples were selected from relatively uniform areas .0.4 ha.

The field selected for this research is located in the north- For these samples, nine cores were composited.
west corner of Crisp County, Georgia, 83856920.510″ to The color slide of the field was scanned into the computer
83856951.944″ W; 32800916.994″ to 32801924.675″ N (Fig. 1). with a resolution of 2700 lines per inch. This image was geo-
The area of this field is about 115 ha with elevations varying referenced into Universal Transverse Mercator projection
from 75 to 85 m. The field was selected because it is quite based on sub-meter GPS measurements of targets, including
variable in surface soil texture and organic matter and is repre- trees, road intersections, and artificial targets, within and sur-
sentative of large areas of the Coastal Plain Region in Georgia. rounding the field. After rectification, the image was resam-
An aerial photograph color slide of the entire field with a pled from the scanned pixel size into 2- by 2-m cell resolution.
bare and dry surface was taken by the USDA Farm Service The rectified image was then converted into ASCII format
Agency in spring 1997. In December 1997, a total of 28 soil for further processing (classifying) the image. Because the
samples were obtained from the field and their locations were image was a color image, three arrays (red, green, and blue
measured using a global positioning system (GPS) with sub- bands) were created. The accuracy of image rectification was
meter accuracy. Areas sampled were based on the variation estimated by using the GPS measurement of some significant
in the apparent surface soil texture across the field, as well objects such as land marks, road intersections, and trees at 15
as on a range of soil organic-matter levels within the different locations within and around the field. A mean error of about
textural areas. The soil samples taken at each location con- 5 m with a maximum error ,10 m was obtained for the differ-
sisted of nine soil cores taken randomly from the 0- to 15-cm ences between the true locations (GPS locations) and the
soil depth within a 2 by 2 m2 area using a 2-cm diam. oakfield responded image locations.
soil probe. These samples were composited and mixed thor- To reduce the variance (noise) among the image pixels
oughly for organic C analysis. The soils were taken to the caused by micro-topography, film processing, and scanning, a
laboratory and air-dried during the next 2 to 3 d, sieved with low-pass filter was applied to the image with a mask in 5 by
a 2-mm sieve, and then stored in plastic containers until ana- 5 cells before examining the relationships between image-

intensity values and surface SOC concentrations. This is anlyzed. The total SOC concentrations of these samples were
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Fig. 3. The low-pass filtered result for the color slide.

Fig. 2. The color slide image of the field. (The image was geo-refer-
enced into the Universal Transverse Mercator coordinate system.)

between iterations; and (iii) the maximum number of itera-
tions (M).

average smoothing filter, as follows: The process of this algorithm is as follows: (i) Arbitrarily
initialize the mean for each of N clusters by simply dividing

Pn(i, j) 5 o
i12

k5i12
o
j12

l5j12

[W(k, l) 3 Po(k, l)] [1] the image into N groups and then computing the mean for
each group. (ii) For each pixel, compute the spectral distance
between this pixel and each cluster mean, and assign the pixelwhere Pn(i, j) is the pixel value for the smoothed image at

location (i, j); Po(k, l) is the pixel value for the image-intensity to the cluster with the minimum distance between the cluster
mean and the pixel. This process is repeated until the percent-value at location (k, l); W(k, l) is the weight factor with each

W having a value of 0.04; and the range of k is (i 2 2, i 1 2), age of unchanged pixels is greater than or equals T, or the
number of iterations is greater than or equals M. In eachthe range of l is ( j 2 2, j 1 2).

Based on the locations for the 28 soil samples, the pixel iteration, the mean of each cluster is recomputed, and these
new means will be used for the next iteration. Initially, 20values of these 28 locations were determined from the filtered

image. The relationship between surface SOC concentrations classes were developed using this procedure.
The classified result was further processed to identify theand the pixel values for the 28 samples was developed by

regression analysis. This relationship was applied to the origi- surface SOC concentrations for each class based on the rela-
tionship between surface SOC concentrations and the pixelnal image, and then an image representing the distribution of

surface SOC concentrations for the field was obtained. The intensity values. The procedure was as follows: (i) compute
the average image-intensity value and the histogram of image-result was called Pre_Result1. The filtered image was not used

in this case because smoothing would remove real spatial intensity values for each class based on the original rectified
image and the classified result. The image-intensity values ofvariability in surface SOC concentrations.

An alternative approach was also used to perform a classifi- each class were extracted from the original image, whereas
the boundary of each class was identified by the classifiedcation to the original image by a minimum-distance clustering

algorithm (Jensen, 1986; Lillesand and Kiefer, 1987). This result; and (ii) determine the average surface SOC concentra-
tion and histogram of surface SOC concentrations for eachalgorithm uses minimum spectral distance to assign a cluster

(class) for each candidate pixel. The process begins with an class based on the relationship between surface SOC concen-
trations and the image-intensity values. The result wasarbitrary number of clusters (classes), and then it processes

repetitively until meeting a certain stop condition (or condi- called Pre_Result2.
Based on the histogram of each class from Pre_Result2,tions). The input parameters for the method include: (i) the

maximum number of clusters to be considered (N); (ii) the Pre_Result2 was reclassified, and eight classes were derived
from the reclassification; the result was referred to as Result2.convergence threshold (T), which is the maximum percentage

of pixels whose class values are allowed to be unchanged Then according to the class range of Result2, Pre_Result1 was
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Fig. 5. The result of Post_Result1. (This image was obtained by first
examining the organic-C concentrations for each pixel and then
classifying the result into eight classes. The clip and majority were
applied before final display.)

Fig. 4. Plots and the fitted curve between organic-C concentrations
and image-intensity value for the red, green, and blue bands. [The those samples for model development. The check for each
fitted equation, with R2 5 0.9266, is log(%SOC) 5 1.715 2 0.0158 location was based on a point buffer (square buffer) with aRed 1 0.0128 Green 2 0.0113 Blue].

buffer size of 5 by 5 pixels (10 by 10 m) to reduce the error
caused from image rectification. For each location at (x, y),

also classified into eight classes; and the result was referred the buffer, with the center at (x, y), was overlaid on the result
to as Result1. image. The average SOC concentrations within this buffer was

Further processing of the results (Result1 and Result2) was computed, as follows:
necessary because of two problems: The first was pixel values
that were located outside the field; this area needed to be

SOC0(x, y) 5 3 o
x12

k5x22
o
y12

l5y22

SOCi (k, l)4/S [2]removed (for the reason of statistics and mapping). The second
problem was the single-pixel classes in the results of the second

where SOCo(x, y) is the average SOC concentration over theclassification. These single-pixel classes are mainly from spot
buffer centered at location (x, y) from the result image; S isnoise in the original slide and scanning process.
the size of the buffer (S 5 25 for this research); SOCi(k, l) isThe first problem was solved by measuring the field bound-
the value of the SOC concentration at location (k, l). This isary with sub-meter accuracy GPS and discarding pixels outside
the average value for a class; and the range of k is (x 2 2,the measured field boundary.
x 1 2), the range of l is (y 2 2, y 1 2) in this research.For the second problem, a majority algorithm was used to

The measured data and the average value within the bufferfilter out single-pixel classes. This method sets a pixel value
were compared to check the accuracy of the final classificationat location (i, j) to the pixel value that has the majority number
results, Post_Result1 and Post_Result2. Two approaches werein the filter mask. The process is as follows: (i) choose a
used to check the accuracy: In the first approach, a relationshipsuitable mask size and move the mask over the image. A mask
between measured and estimated values was developed by awith 3 by 3 cells was selected because it can effectively remove
linear regression. The r 2 values were examined for the twothe single-pixel classes but keep all classes with five or more
methods. In the second approach, the measured and predictedpixels; (ii) for each pixel at location (i, j), look for the pixel
values were classified into one of the eight classes based onvalue Pm with the maximum number (majority) in the mask;
the class scheme. For each location, the measured and theand (iii) reassign the pixel value at location (i, j) to Pm. The
predicted surface SOC concentration values were examinedfinal results were referred as Post_Result1 and Post_Result2.
to check if they were in the same class.Comparisons between Post_Result1 and Post_Result2 were

conducted by examining the area of each class and a histogram
representing the degree of difference of uncommon class RESULTS AND DISCUSSION
pixels.

The geo-referenced image for the field is shown in Fig.The accuracy of the results obtained above was checked,
based on the other 31 soil samples, which were different from 2. On this image, the field is dry without any vegetation



750 SOIL SCI. SOC. AM. J., VOL. 64, MARCH–APRIL 2000

Fig. 7. Area comparison of two approach results, Post_Result1
and Post_Result2.

the red, green, and blue bands; and a, b, c, and d are
coefficients where a 5 1.71499, b 5 20.01576, c 5
0.01281, d 5 20.0113.

Classification of Surface Soil Organic-Carbon
Concentrations

Fig. 6. The result of Post_Result2. (This image was obtained by first
The relationship was applied to the image with twoclassifying the bare surface image into 20 classes, examining the

organic-C concentrations with the average, upper-bound, and different methods. In the first method, Eq. [3] was used
lower-bound values for each class, and then grouping these 20 to calculate the surface SOC concentrations for each
classes into 8 classes. The clip and majority were applied before pixel with the resulting values grouped into one of eightfinal display.)

classes. In the second method, the image was classified
into 20 cluster groups, then Eq. [3] was applied to thecover, so the color represents the surface soil color. In
classified result, and finally the original 20 cluster groupsgeneral, dark color areas indicate high SOC concentra-
were further grouped into eight classes. Both methodstions, whereas the light areas indicate low SOC concen-
used the same ranges of surface SOC concentration fortrations. Different degrees of red colors may reflect the
each class. Comparing these two methods, the resultdifferent levels of Fe concentrations. Shadows existed
using the first approach illustrates more detailed infor-along the east boundary of the field. However, this was
mation but it might also introduce some noise such asnot considered in the data analysis since the shadows
from surface micro-topography, whereas the result usingonly occupied a small area. These shadows can be re-
the second approach shows information more globallymoved if another photo in which the shadow area is
(less detail) but it might miss some true classes.clear is available.

Table 1. Degree of difference between Post_Result1 andRelationship Between Image-Intensity Values
Post_Result2.and Organic Carbon Concentrations

Degree of difference† Percent Number of pixels
To suppress the effect of geo-reference errors on the

%building of the relationship between the organic-C con-
8 0 0centrations and image-intensity values, a low-pass filter 7 0.0 1
6 0.01 36was applied and the result is shown in Fig. 3. Using this
5 0.05 158result and the analyzed data of organic-C concentra- 4 0.14 411

tions, the relationship between them was examined. The 3 0.5 1 328
2 3.3 9 545plots of organic-C concentrations vs. the image-intensity
1 28.6 82 345values of the three bands (red, green, and blue) are 0 67.4 193 948

shown in Fig. 4. A logarithmic linear equation was de-
† The degree of difference indicates the consistency between Post_Result1rived from analysis of the plots, as follows: and Post_Result2. For example, the degree of difference 0 means that

a pixel was classified into the same class in Post_Result1 andSOC 5 exp(a 1 bR 1 cG 1 dB) (R2 5 0.9266) [3] Post_Result2; and 1 means that a pixel was classified into different
classes in Post_Result1 and Post_Result2 but their class difference is 1where SOC is the percentage of surface SOC concentra- (e.g., a pixel was classified into Class 4 in Post_Result1 while it was
classified into Class 5 in Post_Result 2).tion; R, G, and B are the image-intensity values for
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It could be found that a significant number of single- Model Validation
pixel classes existed from the above results. These sin- The linear relationship between the measured and
gle-pixel classes may show some details about the distri- the predicted surface SOC concentrations are shown inbution of surface SOC concentrations. However, the Fig. 8 and 9. For both classification approaches, therefield survey found that most of these details were not was good agreement between the measured (from 31the true representation of the field distribution of sur- locations) and the predicted values with an r 2 of 0.98face SOC concentrations. In addition, these single-pixel for Post_Result1 and 0.97 for Post_Result2 at P , 0.00classes caused too much image variance for analyzing

under a 0.95 confidence level. In addition, the statisticaland mapping the results. These single-pixel classes
analysis showed that the slopes of the linear regressionneeded to be removed, which was done using the major-
lines were close to 1 (0.9975 and 0.9917) at P , 0.00ity method. The results were then converted into vector
under a 0.95 confidence level. The intersects (?0) wereformat (classes are represented by polygons rather than
not significant at P , 0.15 for Post_Result1 and at P ,by pixels), and a color scheme was applied to them for
0.45 for Post_Result2 under a 0.95 confidence level, sothe output. Figures 5 and 6 show the results by using
they were not considered in the linear equations. Fromthe first method and the second method respectively,
the scatter plots, we also noted that the prediction ofwith single-pixel classes removed.
the surface SOC concentrations ,1.3% was better than
that of the surface SOC concentrations .1.3%.

Comparison of Two Approaches The classification accuracy was also evaluated by
checking whether the measured and the predictedThe area for each class from the two classification
classes were the same class (Table 2). From the checkapproaches, Post_Result1 and Post_Result2, were com-
of the 31 locations, the Post_Result1 had seven locationspared and found to be very similar (Fig. 7), based on a
that were classified into wrong classes and thepaired t-test for the area distribution, which gave a value
Post_Result2 had eight locations that were classifiedof P . 0.99. The common pixel classes were also com-
into wrong classes. Overall, the correctness for Post_pared, with 67.4% of the pixels classified in the same
Result1 was 77.4% and the correctness for Post_classes for the two classification methods (Table 1). For
Result2 was 74.2%. When we further examine the mis-pixels with different classes, 87.7% of them were classi-
classified locations, we found that within those misclassi-fied into their neighbor classes; for example, in
fied locations, all of the misclassified locations in Post_Post_Result1, a pixel was classified into Class 4 while

in Post_Result2, this pixel was classified into Class 5. Result1 and all but two of the misclassified locations in

Fig. 8. The linear relationships between measured and predicted (Post_Result1) organic-C concentrations for the 31 locations.
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Fig. 9. The linear relationships between measured and predicted (Post_Result2) organic-C concentrations for the 31 locations.

Post_Result2 were placed into their neighboring classes. described in this paper, the number of samples (for
developing the relationship between surface SOC con-There might be a trend to the misclassification locations.

For the low organic-C locations, the misclassification centrations and image-intensity values) was reduced to
28, which would be 10% of the number required to gridwas more likely classified into its higher organic-C

classes; however, for the high organic locations, it was sample at a scale of 0.405 ha.
more likely classified into its lower organic-C classes.

SUMMARYComparison with Grid Sampling
In summary, we found that high-resolution, remotelyCompared with grid sampling, the primary advantage

sensed imagery of a bare soil field could be quantifiedof the method in this paper lies in its low cost as well
to describe the spatial variation of the organic-C concen-as the detailed and accurate description of spatial varia-
trations of surface soil for a field in southwest Georgia.tion in mapping soil organic matter. With grid sampling,
The technology and methodology were simple and accu-eight to ten cores are typically taken for a composite
rate enough to be of practical use in agricultural produc-sample to represent a 0.405-ha (1-acre) or larger area.
tion fields. They are also less expensive and more accu-This procedure may miss some high or low areas of
rate than traditional methods for developing maps oforganic C within the acre. Even if the individual core
soil organic matter that employ grid sampling, soil analy-samples adequately represent the area sampled, the
sis, and spatial statistics to develop maps. The relation-composite sample will not allow one to describe the
ship between reflected radiation in the visible range andvariation within the area of the composite sample, in
organic C of a bare soil field developed in this research,this case, an area 64 by 64 m. For the method described
perhaps with some modifications, might be applied inhere, the image pixel size was 2 by 2 m, allowing the
other fields in the southeast Coastal Plain Region. Wemapping of the distribution of surface SOC concentra-
will examine other fields in the near future for thistions at this resolution.
purpose.In addition, the methods developed in this research

For further refinement, there are two things we maywould have other advantages compared with grid sam-
need to consider for use in other fields in the region.pling. At present, grid sampling for precision farming
The first is the effect of noise from other soil properties,is labor-intensive and expensive both for soil sampling
such as the soil Fe concentration. However, Fe concen-and for analysis. For example, 280 samples, based on a
tration was as high as 1.2% in the original data and 1.1%0.405-ha (1-acre) grid size, would be taken in this field

if the grid sampling method is used. For the method in the test data and appeared to create no problems.
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